
Project 2: Gate Entry Security
System

Semester Project #2: Gate Entry Security System

Lea Tice

Department of Electronic and Computer Engineering Technology

ECT 308: IoT Microcontrollers

Dr. Alister McLeod

May 05, 2025

Author Note

Correspondence concerning this article should be addressed to Lea Tice, Indiana State

University, 200 N 7th St. Terre Haute, IN 47809, United States.

Email: lea.tice@indstate.edu

Project 2: Gate Entry Security
System

Table of Contents
Abstract .. 3

Gate Entry Security System .. 4

Schematics ... 5

Project Images... 6

Objectives for the Security Camera and System .. 8

Algorithm for the Security Camera and System ... 9

Hardware Overview .. 11

Flowchart and Code Description .. 12

Main Setup & Loop .. 12

motionDetected() Function ... 13

checkIR() Function ... 14

translateIR() Function .. 15

accessGranted() Function ... 16

accessDenied() Function .. 17

openGate() Function .. 18

Test and Debug .. 19

Conclusion ... 22

References ..23

Project 02: Gate Entry
Security System

 3

Abstract

This project involved the development of a microcontroller-based gate entry security system

using an Arduino platform. The goal was to detect and validate individuals requesting access

using a combination of motion detection, image capture, and infrared (IR) remote ID

verification. The system was designed to trigger a TTL serial camera to capture a photo when

motion was detected, store the image to a microSD card, and prompt the user via an LCD screen

to present an access code. An IR receiver was used to validate input from a remote control

against authorized codes. Upon successful verification, a servo motor opened a simulated gate

for a predefined duration. The LCD display updated at each critical stage, including motion

detection, ID request, access granted or denied, and status reset. Although initial project

instructions included web-based moderator verification and DC motor relay control via

ThingSpeak, these were not implemented in the final version. The completed system

demonstrates a functional prototype for low-cost, embedded access control using multiple

hardware interfaces and real-time input processing.

Keywords: Arduino, security system, IR remote, microSD, TTL camera, servo motor, motion

detection, LCD display

Project 02: Gate Entry
Security System

 4

Gate Entry Security System

This project presents the development of a microcontroller-based gate entry security

system designed to demonstrate practical applications of embedded systems in access control

environments. The system is implemented using the Arduino platform and incorporates a range

of components including a TTL serial camera, infrared remote input, servo motor, microSD card

storage, and a character-based LCD interface. The purpose of the system is to autonomously

monitor for motion at a controlled entry point, capture a photographic record of activity, and

authenticate individuals through coded input via an infrared remote. Upon successful

identification, the system simulates gate access by activating a servo-driven mechanism.

Throughout the development process, attention was given to hardware-software integration,

signal reliability, and power stability. This paper outlines the project objectives, system design,

implementation methodology, and testing procedures that support the creation of a functional

and efficient embedded access control prototype suitable for educational and applied research

setting.

Project 02: Gate Entry
Security System

 5

Schematics

Project 02: Gate Entry
Security System

 6

Project Images

Looking For Motion Motion Detected

EnterID:

Project 02: Gate Entry
Security System

 7

Unknown User Known User

Access Granted Access Denied

Project 02: Gate Entry
Security System

 8

Objectives for the Security Camera and System

The objective of this project was to design and implement an Arduino-based gate entry security

system capable of detecting motion, capturing images, and verifying identity using an infrared (IR)

remote. The system aimed to automate the process of monitoring and granting access to a secure area

using a combination of sensors and peripheral devices. Specifically, the project required the setup of a

TTL serial camera to detect motion and capture images, a microSD card module to store those images,

and a 1602 LCD screen to notify the user of system status and access prompts. Upon motion detection,

the system would prompt the user to provide identification via an IR remote. If the transmitted IR code

matched a predefined authorized value, a servo motor would rotate to simulate gate opening, then return

to its original position after a brief delay. The LCD would update at each stage, displaying messages such

as “Motion Detected,” “Enter ID,” and either “Access Granted” or “Access Denied.” Although the initial

project requirements included integration with a web platform (ThingSpeak) for moderator verification

and online status monitoring, this feature was not implemented in the final version. Similarly, plans to use

a DC motor and relay for physical gate control were replaced with a servo motor simulation. The project

successfully demonstrated a functional and compact security access system using real-time sensor input

and output control via a microcontroller.

Project 02: Gate Entry
Security System

 9

Algorithm for the Security Camera and System

The algorithm for the gate entry security system was designed to coordinate multiple

modules in a sequential process triggered by motion detection. The program begins by

initializing all connected peripherals, including the TTL camera, LCD display, servo motor, SD

card module, and IR receiver. Once initialized, the system enters an idle loop where the LCD

displays a message indicating that it is actively scanning for motion. When the camera detects

motion, the LCD is updated to notify the user, and a snapshot is immediately taken and saved to

the microSD card with a unique filename. Following image capture, the system prompts the user

to enter an ID via an IR remote. The IR signal is decoded, and the received code is compared to

pre-approved hexadecimal values stored in the program. If the input matches a recognized code,

the LCD displays the associated username and confirms access permission. The system then

activates the servo motor to rotate to an open position, simulating the gate opening, maintains the

position for five seconds, and returns the servo to its original state. If the IR code is not

recognized, the LCD displays an “Access Denied” message, and no further action is taken. Each

operation is accompanied by timed LCD updates to ensure users are informed throughout the

sequence.

1) System Initialization

a) Begin serial communication for debug output.

b) Initialize the LCD screen and set the cursor position.

c) Attach the servo motor to its control pin and move it to the closed gate position.

d) Initialize the microSD card and prepare it for file operations.

e) Configure the TTL camera settings, including image resolution and motion detection.

f) Enable the IR receiver for capturing input from an IR remote.

Project 02: Gate Entry
Security System

 10

2) Main Monitoring Loop

a) Display a message on the LCD indicating that the system is actively scanning for motion.

b) Continuously check the camera for a motion detection signal.

c) If motion is detected, proceed to the next steps.

3) Motion Response Routine

a) Disable motion detection temporarily to avoid interference during image capture.

b) Display a "Motion Detected" message on the LCD.

c) Capture a still image using the TTL camera and save the file to the SD card with an

automatically incremented filename.

d) Prompt the user to input an access ID using the IR remote.

e) Wait for and decode the IR signal input.

4) Access Verification

a) Compare the decoded IR code against authorized values.

b) If the IR code matches a predefined valid ID (e.g., 0xE916FF00), display the user label,

show an "Access Granted" message, and trigger the servo motor to simulate gate opening

for a predefined time interval.

c) If the IR code does not match, display an "Access Denied" message and do not activate

the gate mechanism.

5) System Reset

a) Clear the LCD screen after each operation.

b) Re-enable camera motion detection.

c) Return to the main monitoring loop to await the next motion event.

Project 02: Gate Entry
Security System

 11

Hardware Overview

• Elegoo UNO R3

• Jumper Wires

• SD Card Module

• 8 GB SD Card

• 10 KΩ Potentiometer

• Servo Motor

• IR Sensor

• IR remote

• Adafruit VC0706 TTL Camera

• 100 µF Capacitor

• 1 KΩ Resistor

• 5 V DC Power Supply

• LCD 1602 Module

• Breadboards

• Arduino IDE

Project 02: Gate Entry
Security System

 12

Flowchart and Code Description

Main Setup & Loop

Project 02: Gate Entry
Security System

 13

motionDetected() Function

Project 02: Gate Entry
Security System

 14

checkIR() Function

Project 02: Gate Entry
Security System

 15

translateIR() Function

Project 02: Gate Entry
Security System

 16

accessGranted() Function

Project 02: Gate Entry
Security System

 17

accessDenied() Function

Project 02: Gate Entry
Security System

 18

openGate() Function

Project 02: Gate Entry
Security System

 19

Test and Debug

Extensive testing and debugging were required throughout the development of the Gate Entry

Security System to ensure proper functionality of all integrated components. Challenges emerged during

the interfacing of the TTL serial camera, IR receiver, SD card module, LCD display, and servo motor.

Each issue was resolved through step-by-step troubleshooting, code refinement, and hardware

verification.

One of the initial challenges encountered was establishing reliable serial communication between

the Arduino and the VC0706 TTL camera module. Serial communication requires careful matching of

transmit (TX) and receive (RX) lines, which are unidirectional. Early wiring attempts incorrectly

connected TX-to-TX and RX-to-RX between the Arduino and camera, which resulted in failed camera

initialization. To resolve this, the TX pin of the Arduino was connected to the RX pin of the camera, and

the RX pin of the Arduino was connected to the TX pin of the camera, following standard UART

protocol. Because the Arduino UNO has only one hardware serial port, which was occupied by the USB

connection for debugging, a SoftwareSerial interface was used to create a second serial connection

dedicated to the camera. Pins D2 and D3 were assigned for RX and TX respectively, allowing the camera

to operate on its own serial channel and eliminating communication interference with the serial monitor.

SD card integration presented a different set of issues related to memory management and

initialization timing. In an effort to reduce SRAM usage, the standard SD library (SD.h) and its dependent

File class were modified to strip out unused functions. However, this caused compile-time errors because

critical virtual functions such as read() and peek() were removed, breaking compatibility with the Arduino

core libraries. After restoring these methods, the SD card still failed to initialize during runtime.

Diagnostic serial output revealed that SD.begin(cs) returned false, indicating a hardware or

communication issue. This was ultimately traced to the order of peripheral initialization in the setup()

function. The SPI bus is shared by both the SD card module and the camera library, and initializing the

Project 02: Gate Entry
Security System

 20

camera before the SD card caused bus contention. Reordering the initialization by calling SD.begin(10)

before starting the camera resolved the conflict and allowed the SD card to be accessed reliably.

Further improvements were made to ensure compatibility with FAT32 filesystems used on

microSD cards. FAT32 requires file names to be in uppercase and follow the 8.3 format. To

accommodate this, image filenames were programmatically converted to uppercase using a custom

strupr() function before being passed to SD.open(). This step ensured that filenames like “IMG001.JPG”

were correctly recognized by the filesystem, avoiding cases where lowercase names silently failed to

create files. With these changes in place, the system successfully captured images upon motion detection

and saved them to the SD card under incremented filenames.

The camera save routine was enhanced to reliably store images. This involved looping through

the picture data using 32-byte buffer chunks and ensuring the camera’s motion detection feature was

temporarily disabled during the save operation. For the IR remote, decoding issues were identified when

repeated button presses generated identical values. These were resolved by properly resuming the receiver

after each signal and ensuring each code was correctly parsed. To minimize memory usage, LCD display

messages were stored in program memory using PROGMEM, and functions like strcpy_P were used to

retrieve them efficiently.

Servo motor jitter was identified during testing, often causing unpredictable motion after the gate

access routine. The issue was traced to voltage dips caused by current draw from the servo. Solutions

included recommendations to use decoupling capacitors across the power and ground lines, or to power

the servo from a separate source with a shared ground. Additional testing confirmed that improper

grounding or shared power lines contributed to erratic behavior.

LCD initialization required precise timing to avoid display corruption. The custom ShiftedLCD

library used SPI to communicate with a 74HC595 shift register driving the 1602 LCD in 4-bit mode. This

approach initially offered the benefit of conserving digital I/O pins by shifting data through serial-to-

parallel conversion. However, it required detailed analysis of the shift register's pin behavior and a firm

Project 02: Gate Entry
Security System

 21

understanding of how to perform bitwise operations to control specific LCD lines such as RS, Enable, and

data bits D4 through D7. Extensive research was conducted to break down how the LCD's command

structure maps to 4-bit operations, and how those bits must be clocked through the shift register using

SPI.transfer along with proper latch and pulse timing. Despite significant effort in reverse-engineering the

instruction set and timing sequence, persistent display instability and difficulty troubleshooting SPI

timing led to the shift register approach being abandoned. Instead, the LCD was connected directly to the

Arduino’s analog pins A0 through A5, allowing for more straightforward parallel communication. This

change improved reliability and reduced debugging complexity, especially during the critical initialization

phase which follows the HD44780 standard sequence of function set, display control, and entry mode

commands.

Later in the development process, memory constraints caused SRAM overflow errors due to the

use of dynamic String objects and large buffers for camera and SD card operations. These were corrected

by switching to fixed-length char arrays, reducing buffer sizes, and streamlining code. After

implementing all necessary optimizations and corrections, the system successfully completed its intended

functions: detecting motion, displaying messages, capturing and storing images, and validating user

access using the IR remote. Each fix was confirmed through LCD feedback and serial monitor output

during test cycles.

Project 02: Gate Entry
Security System

 22

Conclusion

The Gate Entry Security System project achieved its primary objective of creating a

reliable Arduino based access control prototype that integrates motion detection, image capture,

identity verification, and mechanical actuation. The final design successfully combined multiple

peripherals including a TTL serial camera, LCD screen, IR receiver, microSD card module, and

both a servo motor and a DC motor via relay control to simulate real world security entry

operations. Careful attention was given to hardware timing, memory optimization, and electrical

stability. Through extensive debugging and design revisions, the system was refined to handle

motion triggered events, validate authorized users via IR codes, capture and store photographic

records, and activate a physical gate mechanism using both servo and DC motors. The

experience emphasized the importance of modular code structure, hardware software

synchronization, and thoughtful peripheral interfacing. Future improvements may include

wireless data upload, encrypted access logs, and mobile app control for enhanced functionality

and scalability.

Project 02: Gate Entry
Security System

 23

References

Monk, S. (2016). Programming Arduino: Getting Started with Sketches (2nd ed.). McGraw Hill.

Seneviratne, P. (2015). Internet of Things with Arduino Blueprints: Develop Interactice Arduino-

Based Internet Projects with Ethernet and Wi-Fi . Packt Publishing.

Project 02: Gate Entry
Security System

 24

Footnotes

Figure 1.

Complete wiring schematic of the project

Project 02: Gate Entry
Security System

 25

Figure 2.

Image of completed project demonstrating LCD prompt is informing user that the device is

actively looking for motion. This step is only taken if the SD card has successfully initialized.

Name: Lea Tice Date: 05/05/2025

Final Project Class: ECT 405 1(15)

ECT 405 Final Project Lab Report

May 2025

Prepared by:

Lea Tice

Name: Lea Tice Date: 05/05/2025

Final Project Class: ECT 405 2(15)

Table of Contents

Objectives ... 3

Equipment and Materials ... 4

Methods ... 4

Results .. 11

Conclusion ... 15

Name: Lea Tice Date: 05/05/2025

Final Project Class: ECT 405 3(15)

Objectives
The primary objective of this project was to investigate and understand the electrical signal

behavior of a microcontroller-based, motion-activated security camera system. This system

integrates an ELEGOO Uno R3 microcontroller with two peripheral components: a TTL serial

camera (Adafruit VC0706) for image capture and a microSD card module for data storage.

The focus of the analysis was on how these components interact, particularly during critical

moments such as image capture and file writing.

To achieve this, the Analog Discovery 3 logic analyzer and the WaveForms software were

utilized to probe and visualize real-time signals within the circuit. Specific attention was

given to monitoring the SPI communication lines, Chip Select (CS), Serial Clock (SCK),

Master Out Slave In (MOSI), and Master In Slave Out (MISO), to confirm that the data transfer

processes were being executed correctly and in the appropriate sequence. These signals

were chosen due to their critical roles in orchestrating communication between the

microcontroller and the SD card during write operations.

Additionally, power stability was analyzed by measuring the analog voltage supply during

both idle and active states. This helped identify any dips, surges, or irregularities in voltage

that could interfere with normal operation, particularly during moments of high current

demand, such as when saving images to the SD card.

Another objective of this project was to troubleshoot and mitigate issues commonly

associated with power delivery in embedded systems, such as current spikes and potential

brownouts. The project aimed to assess the effectiveness of using decoupling components,

like capacitors, and other methods to stabilize voltage and protect against resets or

communication failures. By examining both the data and power aspects of the system, this

project intended to provide a well-rounded understanding of embedded signal behavior

under real-world operating conditions.

Name: Lea Tice Date: 05/05/2025

Final Project Class: ECT 405 4(15)

Equipment and Materials
• Analog Discovery 3

• WaveForms Software

• USB-C cable

• AD3 Wire Bundle w/Harness

• Jumper Wires

• ELEGOO Uno R3 Microcontroller

• MicroSD Card Module

• Adafruit VC0706 TTL Serial Camera Module

• 1 100 µF Capacitor

• 1 1KΩ Resistor

• 1 560 Ω Resistor

Methods
Circuit Schematic:

Name: Lea Tice Date: 05/05/2025

Final Project Class: ECT 405 5(15)

This circuit is powered by an ELEGOO Uno R3 microcontroller, which controls two key

modules: the Adafruit VC0706 TTL Serial Camera and a MicroSD card module. The circuit is

part of a larger system that utilizes the motion detection feature of the TTL camera. Once

motion is detected, the camera captures a snapshot, which is then saved onto the SD card.

The VC0706 camera module has six pins, though only the first four are used in this project.

The final two pins are intended for video output and are not relevant here. The active

connections are:

• 5V – connected directly to the 5V output of the microcontroller.

• GND – connected directly to ground.

• TX (transmit) – connected to digital pin 2 on the Uno (used as the microcontroller’s

RX pin).

• RX (receive) – connected to digital pin 3 on the Uno (used as the microcontroller’s

TX pin).

Note: The camera’s TX must connect to the Uno’s RX and vice versa; TX-to-TX or RX-to-RX

connections will not work. Pins 0 (RX) and 1 (TX) on the Uno are avoided because they are

used for USB communication with the computer.

The MicroSD card module communicates using the SPI protocol and has the following six

pins:

• VCC – connected to 5V power.

• GND – connected to ground.

• CS (Chip Select) – connected to digital pin 10 on the Uno. This pin is set LOW to

activate communication with the SD card and HIGH to deactivate it.

• MOSI (Master Out, Slave In) – connected to digital pin 11. This line sends data from

the microcontroller to the SD card (e.g., image data).

• MISO (Master In, Slave Out) – connected to digital pin 12. This line sends data from

the SD card back to the microcontroller.

Name: Lea Tice Date: 05/05/2025

Final Project Class: ECT 405 6(15)

• SCK (Serial Clock) – connected to digital pin 13. This pin provides the clock signal

to synchronize data transmission over SPI.

Using the Analog Discovery 3 and WaveForms software, I probed the following five points in

the circuit to analyze signal behavior:

1. Analog Voltage Supply – Measured voltage stability during idle (passive) state and

during active image capture/storage to observe current draw and supply dips.

Name: Lea Tice Date: 05/05/2025

Final Project Class: ECT 405 7(15)

2. CS Pin (Chip Select) – Monitored to observe when the SD card is being actively

accessed (LOW state indicates active communication).

Name: Lea Tice Date: 05/05/2025

Final Project Class: ECT 405 8(15)

3. SCK Pin (Serial Clock) – Checked for timing pulses that indicate active SPI

communication.

Name: Lea Tice Date: 05/05/2025

Final Project Class: ECT 405 9(15)

4. MOSI Pin – Observed to confirm data transmission from the Uno to the SD card

during file writes.

Name: Lea Tice Date: 05/05/2025

Final Project Class: ECT 405 10(15)

5. MISO Pin – Captured to view data responses from the SD card back to the Uno.

Name: Lea Tice Date: 05/05/2025

Final Project Class: ECT 405 11(15)

Results
Voltage behavior was measured during both the idle and active states of the circuit. While

troubleshooting the full system, it became evident that current fluctuations occurred during

image-saving operations to the SD card, likely due to the sudden current surges SD modules

are known to cause. To mitigate potential brownouts or system resets, a 100 µF capacitor

was added to stabilize the power supply. An attempt was made to filter power using diodes;

however, this approach was unsuccessful, suggesting that my understanding of diode

behavior in power filtering applications may need further refinement.

The CS (Chip Select) pin was monitored to observe its behavior during SD card access.

While the system was idle, when no image was being captured or saved—the CS pin

Name: Lea Tice Date: 05/05/2025

Final Project Class: ECT 405 12(15)

remained HIGH, indicating that the SD card was not selected. Upon motion detection and

image capture, the CS pin transitioned to LOW, marking the start of the write operation. This

transition confirms that the microcontroller correctly selected the SD card for SPI

communication. The shift from HIGH to LOW occurred precisely at the beginning of the file-

saving process, validating proper SPI protocol implementation.

The SCK (Serial Clock) pin was measured to observe the timing pulses that synchronize SPI

communication. Clock activity was expected only during actual data transfers, and the

Name: Lea Tice Date: 05/05/2025

Final Project Class: ECT 405 13(15)

results confirmed this behavior. Clean, regular pulses were observed with no irregularities,

indicating proper synchronization and reliable SPI timing.

The MOSI (Master Out, Slave In) pin serves as the data transmission line from the

microcontroller to the SD card. During image write operations, bursts of consistent signals

were observed, indicating successful data transfer. This signal behavior also supports

proper timing coordination across all SPI lines, reinforcing that communication was

functioning as intended.

Name: Lea Tice Date: 05/05/2025

Final Project Class: ECT 405 14(15)

The MISO (Master In, Slave Out) pin carries responses from the SD card back to the

microcontroller. Signal activity was expected during SD card initialization, file opening, and

writing processes. The presence of these signals confirms that bidirectional communication

was functioning correctly and that the SD card was returning valid data as expected.

Name: Lea Tice Date: 05/05/2025

Final Project Class: ECT 405 15(15)

Conclusion
Through the use of the Analog Discovery 3 and WaveForms software, this project

successfully captured and analyzed the behavior of critical signals in a microcontroller-

based camera and storage system. The CS, SCK, MOSI, and MISO pins all exhibited

expected activity aligned with SPI protocol operations, confirming proper communication

between the Arduino and the microSD card. Voltage measurements revealed current

fluctuations during data writing, which were mitigated by adding a 100 µF capacitor to

stabilize the power supply. While diode-based power filtering was attempted, it proved

ineffective, highlighting an area for further learning. Overall, the system demonstrated

reliable functionality, and the signal measurements validated that the circuit behaved as

designed during image capture and storage.

1 // include liquid crytal library
2 #include <LiquidCrystal.h>
3 // include library for servo motor
4 #include <Servo.h>
5 // include library for ttl camera and software serial connection for camera
6 #include <Adafruit_VC0706.h>
7 #include <SoftwareSerial.h>
8 // include library for SD card
9 #include <SD.h>

10 // include library that houses functions for the IR remote, remove whats unneeded to
free memory

11 #define DECODE_NEC
12 #undef DECODE_SONY
13 #undef DECODE_RC5
14 #undef DECODE_PANASONIC
15 #undef DECODE_JVC
16 #include <IRremote.h>
17
18
19 // ******************* LIBRARY DEFINITIONS ****************
20
21 ///
22 // LCD SCREEN ///
23 ///
24 LiquidCrystal screen(A0, A1, A2, A3, A4, A5);
25
26 ///
27 // SERVO MOTOR //
28 ///
29 Servo myServo;
30 int originalPos = 10;
31
32 ///
33 // ADAFRUIT TTL CAMERA //////////////////////////////////
34 ///
35 SoftwareSerial cameraConnection(2, 3); // RX, TX
36 Adafruit_VC0706 camera = Adafruit_VC0706(&cameraConnection);
37 uint8_t cameraBuffer[32];
38 char imageFilename[13];
39
40 ///
41 // IR SENSOR & REMOTE ///////////////////////////////////
42 ///
43 // Define the signal pin for the IR reciever as PWM pin 3
44 int irsensor = 6;
45 // Create instance of IRrecv named irsig (IR Signal) using data from pin 3 (irsensor)
46 IRrecv irsig(irsensor);
47 // variable uses to store the last decodedRawData
48 // leading u says that type is unsigned
49 // int says it is a integer value (not necessarily an int)
50 // the value defines the number of bits used to store the value (8, 16, 32, etc.)
51 // _t says that sizes are standard across all platforms
52 uint32_t last_decodedRawData = 0;
53
54 ///
55 // PROGMEM VARIABLES ////////////////////////////////////
56 ///
57 const char msgMotionDetected[] PROGMEM = "Motion Detected!";
58 const char msgEnterID[] PROGMEM = "EnterID:";
59 const char msgAccessGranted[] PROGMEM = "Access Granted";
60 const char msgAccessDenied[] PROGMEM = "Access Denied";
61 const char msgLookingFor[] PROGMEM = "Looking For";
62 const char msgMotion[] PROGMEM = "Motion...";
63
64 char buffer[17];
65
66
67 // ****************** PROGRAM FUNCTIONS *****************
68

69 // Depending on what button is pressed will output its value in HEX and user value
70 // If user holds button down, remote will detect a same value as old value and
71 // will read it as a repeat
72 void translateIR(uint32_t code) {
73
74 char label[10] = "";
75
76 // Serial.print("Decoded IR: 0x");
77 // Serial.println(code, HEX);
78
79 // only ID number that will work
80 if (code == 0xE916FF00) {
81 strcpy(label, "Lea");
82 screen.setCursor(0, 1);
83 screen.print(label);
84 delay(1000);
85 accessGranted();
86 }
87 else {
88 strcpy(label, "Unknown");
89 screen.setCursor(0, 1);
90 screen.print(label);
91 delay(1000);
92 accessDenied();
93 }
94
95 screen.clear();
96 }
97
98
99 void checkIR(){

100 // checks to see if ir signal is present
101 screen.clear();
102 screen.setCursor(0, 0);
103 strcpy_P(buffer, msgEnterID);
104 screen.print(buffer);
105 irsig.resume();
106
107 while (!irsig.decode()){
108 ;
109 }
110 if (irsig.decode()){
111 uint32_t code = irsig.decodedIRData.decodedRawData;
112 // .resume readys the IR sensor to read the next signal
113 // irsig.resume();
114 translateIR(code);
115 }
116 irsig.resume();
117 }
118
119 void openGate(){
120 delay(10);
121 myServo.write(120);
122 delay(5000);
123 myServo.write(originalPos);
124 delay(200);
125 }
126
127 void motionDetected(){
128 camera.setMotionDetect(false);
129 screen.clear();
130 screen.setCursor(0, 0);
131 strcpy_P(buffer, msgMotionDetected);
132 screen.print(buffer);
133 delay(500);
134 saveSnapshot(imageFilename);
135 delay(100);
136 checkIR();
137 delay(100);

138 camera.setMotionDetect(true);
139 delay(50);
140 }
141
142 void accessGranted(){
143 screen.clear();
144 screen.setCursor(0, 0);
145 strcpy_P(buffer, msgAccessGranted);
146 screen.print(buffer);
147 openGate();
148 screen.clear();
149 }
150
151 void accessDenied(){
152 screen.clear();
153 screen.setCursor(0, 0);
154 strcpy_P(buffer, msgAccessDenied);
155 screen.print(buffer);
156 delay(1000);
157 screen.clear();
158 }
159
160 // Helper function to convert string to uppercase
161 char *strupr(char *s) {
162 char *p = s;
163 while (*p) {
164 *p = toupper(*p);
165 p++;
166 }
167 return s;
168 }
169
170 bool saveSnapshot(char* outFilename) {
171 Serial.println("Taking picture...");
172 if (!camera.takePicture()) {
173 // Serial.println("Camera failed to take picture!");
174 return false;
175 }
176
177 uint16_t jpglen = camera.frameLength();
178 // Serial.print("Image size: ");
179 // Serial.println(jpglen);
180
181 for (uint8_t i = 0; i < 100; i++) {
182 sprintf(outFilename, "IMG%03d.JPG", i);
183 strupr(outFilename);
184 if (!SD.exists(outFilename)) break;
185 }
186
187 // Serial.print("Saving as: ");
188 // Serial.println(outFilename);
189
190 delay(50);
191 File imgFile = SD.open(outFilename, FILE_WRITE);
192 if (!imgFile) {
193 // Serial.println("Failed to open file for writing.");
194 return false;
195 }
196
197 while (jpglen > 0) {
198 uint8_t bytesToRead = min(32, jpglen);
199 uint8_t *buffer = camera.readPicture(bytesToRead);
200 if (!buffer) {
201 // Serial.println("Camera readPicture returned NULL.");
202 break;
203 }
204
205 imgFile.write(buffer, bytesToRead);
206 jpglen -= bytesToRead;

207 }
208
209 imgFile.close();
210 Serial.println("Image saved successfully.");
211 return true;
212 }
213
214 // ****************** SETUP *****************************
215
216 void setup(){
217
218 // begin serial monitor
219 Serial.begin(9600);
220
221 // start the LCD screen
222 screen.begin(16, 2);
223
224 // attach servo to pin 5 and move to start position 0
225 myServo.attach(5);
226 myServo.write(originalPos);
227
228 SD.begin(10);
229
230 if (!SD.begin(10)) {
231 Serial.println("SD init failed!");
232 return;
233 }
234
235 // File testFile = SD.open("test.txt", FILE_WRITE);
236 // if (testFile) {
237 // testFile.println("SD card is working!");
238 // testFile.close();
239 // Serial.println("Test file written.");
240 // }
241 // else {
242 // Serial.println("Failed to write test file.");
243 // }
244
245 // start camera
246 cameraConnection.begin(38400);
247 camera.setImageSize(VC0706_320x240);
248 camera.setMotionDetect(true);
249
250 // start ir sensor receiver
251 irsig.enableIRIn(); // Start the receiver
252 }
253
254 // ******************* LOOP *****************************
255
256 void loop(){
257 // let user know looking for motion...
258 screen.setCursor(0, 0);
259 strcpy_P(buffer, msgLookingFor);
260 screen.print(buffer);
261 screen.setCursor(0, 1);
262 strcpy_P(buffer, msgMotion);
263 screen.print(buffer);
264
265 if (camera.motionDetected()) {
266 motionDetected();
267 }
268 }
269

